Illumination estimation via nonnegative matrix factorization

نویسندگان

  • Lilong Shi
  • Brian V. Funt
  • Weihua Xiong
چکیده

The problem of illumination estimation for color constancy and automatic white balancing of digital color imagery can be viewed as the separation of the image into illumination and reflectance components. We propose using nonnegative matrix factorization with sparseness constraints to separate these components. Since illumination and reflectance are combinedmultiplicatively, the first step is to move to the logarithm domain so that the components are additive. The image data is then organized as a matrix to be factored into nonnegative components. Sparseness constraints imposed on the resulting factors help distinguish illumination from reflectance. The proposed approach provides a pixel-wise estimate of the illumination chromaticity throughout the entire image. This approach and its variations can also be used to provide an estimate of the overall scene illumination chromaticity. © 2012 SPIE and IS&T. [DOI: 10.1117/1.JEI

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Style template and guidelines for AIC2007 Proceedings

The problem of illumination estimation for colour constancy and automatic white balancing of digital color imagery can be viewed as the separation of the image into illumination and reflectance components. We propose using nonnegative matrix factorization with sparseness constraints (NMFsc) to separate the components. Since illumination and reflectance are combined multiplicatively, the first s...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Electronic Imaging

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2012